183 research outputs found

    Characterisation and airborne deployment of a new counterflow virtual impactor inlet

    Get PDF
    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterisation tests and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (∼15 l min^(−1)) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterised the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7–13.1 μm. The mean percentage error between cut size measurements and predictions from aerodynamic drag theory is 1.7%. The CVI was deployed on the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California in July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream of the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter

    Is there an aerosol signature of chemical cloud processing?

    Get PDF
    The formation of sulfate and secondary organic aerosol mass in the aqueous phase (aqSOA) of cloud and fog droplets can significantly contribute to ambient aerosol mass. While tracer compounds give evidence that aqueous-phase processing occurred, they do not reveal the extent to which particle properties have been modified in terms of mass, chemical composition, hygroscopicity, and oxidation state. We analyze data from several field experiments and model studies for six air mass types (urban, biogenic, marine, wild fire biomass burning, agricultural biomass burning, and background air) using aerosol size and composition measurements for particles 13–850&thinsp;nm in diameter. We focus on the trends of changes in mass, hygroscopicity parameter κ, and oxygen-to-carbon (O&thinsp;∕&thinsp;C) ratio due to chemical cloud processing. We find that the modification of these parameters upon cloud processing is most evident in urban, marine, and biogenic air masses, i.e., air masses that are more polluted than very clean air (background air) but cleaner than heavily polluted plumes as encountered during biomass burning. Based on these trends, we suggest that the mass ratio (Rtot) of the potential aerosol sulfate and aqSOA mass to the initial aerosol mass can be used to predict whether chemical cloud processing will be detectable. Scenarios in which this ratio exceeds Rtot ∼ 0.5 are the most likely ones in which clouds can significantly change aerosol parameters. It should be noted that the absolute value of Rtot depends on the considered size range of particles. Rtot is dominated by the addition of sulfate (Rsulf) in all scenarios due to the more efficient conversion of SO2 to sulfate compared to aqSOA formation from organic gases. As the formation processes of aqSOA are still poorly understood, the estimate of RaqSOA is likely associated with large uncertainties. Comparison to Rtot values as calculated for ambient data at different locations validates the applicability of the concept to predict a chemical cloud-processing signature in selected air masses.</p

    Characterisation of the Putative Effector Interaction Site of the Regulatory HbpR Protein from Pseudomonas azelaica by Site-Directed Mutagenesis

    Get PDF
    Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ54-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiphenyl. We use protein structure modeling to predict folding of the effector recognition domain of HbpR and molecular docking to identify the region where 2-hydroxybiphenyl may interact with HbpR. A large number of site-directed HbpR mutants of residues in- and outside the predicted interaction area was created and their potential to induce reporter gene expression in Escherichia coli from the cognate PC promoter upon activation with 2-hydroxybiphenyl was studied. Mutant proteins were purified to study their conformation. Critical residues for effector stimulation indeed grouped near the predicted area, some of which are conserved among XylR/DmpR subfamily members in spite of displaying different effector specificities. This suggests that they are important for the process of effector activation, but not necessarily for effector specificity recognition

    Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study

    Get PDF
    Deep convective clouds are critically important to the distribution of atmospheric constituents throughout the troposphere but are difficult environments to study. The Deep Convective Clouds and Chemistry (DC3) study in 2012 provided the environment, platforms, and instrumentation to test oxidation chemistry around deep convective clouds and their impacts downwind. Measurements on the NASA DC-8 aircraft included those of the radicals hydroxyl (OH) and hydroperoxyl (HO2), OH reactivity, and more than 100 other chemical species and atmospheric properties. OH, HO2, and OH reactivity were compared to photochemical models, some with and some without simplified heterogeneous chemistry, to test the understanding of atmospheric oxidation as encoded in the model. In general, the agreement between the observed and modeled OH, HO2, and OH reactivity was within the combined uncertainties for the model without heterogeneous chemistry and the model including heterogeneous chemistry with small OH and HO2 uptake consistent with laboratory studies. This agreement is generally independent of the altitude, ozone photolysis rate, nitric oxide and ozone abundances, modeled OH reactivity, and aerosol and ice surface area. For a sunrise to midday flight downwind of a nighttime mesoscale convective system, the observed ozone increase is consistent with the calculated ozone production rate. Even with some observed-to-modeled discrepancies, these results provide evidence that a current measurement-constrained photochemical model can simulate observed atmospheric oxidation processes to within combined uncertainties, even around convective clouds. For this DC3 study, reduction in the combined uncertainties would be needed to confidently unmask errors or omissions in the model chemical mechanism.</p

    Evaluating WRF-GC v2.0 predictions of boundary layer height and vertical ozone profile during the 2021 TRACER-AQ campaign in Houston, Texas

    Get PDF
    The TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign probed Houston air quality with a comprehensive suite of ground-based and airborne remote sensing measurements during the intensive operating period in September 2021. Two post-frontal high-ozone episodes (6–11 and 23–26 September) were recorded during the aforementioned period. In this study, we evaluated the simulation of the planetary boundary layer (PBL) height and the vertical ozone profile by a high-resolution (1.33 km) 3-D photochemical model, the Weather Research and Forecasting (WRF)-driven GEOS-Chem (WRF-GC). We evaluated the PBL heights with a ceilometer at the coastal site La Porte and the airborne High Spectral Resolution Lidar 2 (HSRL-2) flying over urban Houston and adjacent waters. Compared with the ceilometer at La Porte, the model captures the diurnal variations in the PBL heights with a very strong temporal correlation (R&gt;0.7) and ±20 % biases. Compared with the airborne HSRL-2, the model exhibits a moderate to strong spatial correlation (R=0.26–0.68), with ±20 % biases during the noon and afternoon hours during ozone episodes. For land–water differences in PBL heights, the water has shallower PBL heights compared to land. The model predicts larger land–water differences than the observations because the model consistently underestimates the PBL heights over land compared to water. We evaluated vertical ozone distributions by comparing the model against vertical measurements from the TROPospheric OZone lidar (TROPOZ), the HSRL-2, and ozonesondes, as well as surface measurements at La Porte from a model 49i ozone analyzer and one Continuous Ambient Monitoring Station (CAMS). The model underestimates free-tropospheric ozone (2–3 km aloft) by 9 %–22 % but overestimates near-ground ozone (&lt;50 m aloft) by 6 %-39 % during the two ozone episodes. Boundary layer ozone (0.5–1 km aloft) is underestimated by 1 %–11 % during 8–11 September but overestimated by 0 %–7 % during 23–26 September. Based on these evaluations, we identified two model limitations, namely the single-layer PBL representation and the free-tropospheric ozone underestimation. These limitations have implications for the predictivity of ozone's vertical mixing and distribution in other models.</p

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Phase II trial of Modified Vaccinia Ankara (MVA) virus expressing 5T4 and high dose Interleukin-2 (IL-2) in patients with metastatic renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-2 (IL-2) induces durable objective responses in a small cohort of patients with metastatic renal cell carcinoma (RCC) but the antigen(s) responsible for tumor rejection are not known. 5T4 is a non-secreted membrane glycoprotein expressed on clear cell and papillary RCCs. A modified vaccinia virus Ankara (MVA) encoding 5T4 was tested in combination with high-dose IL-2 to determine the safety, objective response rate and effect on humoral and cell-mediated immunity.</p> <p>Methods</p> <p>25 patients with metastatic RCC who qualified for IL-2 were eligible and received three immunizations every three weeks followed by IL-2 (600,000 IU/kg) after the second and third vaccinations. Blood was collected for analysis of humoral, effector and regulatory T cell responses.</p> <p>Results</p> <p>There were no serious vaccine-related adverse events. While no objective responses were observed, three patients (12%) were rendered disease-free after nephrectomy or resection of residual metastatic disease. Twelve patients (48%) had stable disease which was associated with improved median overall survival compared to patients with progressive disease (not reached vs. 28 months, p = 0.0261). All patients developed 5T4-specific antibody responses and 13 patients had an increase in 5T4-specific T cell responses. Although the baseline frequency of Tregs was elevated in all patients, those with stable disease showed a trend toward increased effector CD8+ T cells and a decrease in Tregs.</p> <p>Conclusion</p> <p><b>V</b>accination with MVA-5T4 did not improve objective response rates of IL-2 therapy but did result in stable disease associated with an increase in the ratio of 5T4-specific effector to regulatory T cells in selected patients.</p> <p>Trial registration number</p> <p>ISRCTN83977250</p

    Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions

    Get PDF
    In the central Arctic Ocean the formation of clouds and their properties are sensitive to the availability of cloud condensation nuclei (CCN). The vapors responsible for new particle formation (NPF), potentially leading to CCN, have remained unidentified since the first aerosol measurements in 1991. Here, we report that all the observed NPF events from the Arctic Ocean 2018 expedition are driven by iodic acid with little contribution from sulfuric acid. Iodic acid largely explains the growth of ultrafine particles (UFP) in most events. The iodic acid concentration increases significantly from summer towards autumn, possibly linked to the ocean freeze-up and a seasonal rise in ozone. This leads to a one order of magnitude higher UFP concentration in autumn. Measurements of cloud residuals suggest that particles smaller than 30 nm in diameter can activate as CCN. Therefore, iodine NPF has the potential to influence cloud properties over the Arctic Ocean

    Dimethylamine in cloud water: a case study over the northwest Atlantic Ocean

    Get PDF
    This study analyzes characteristics of an important alkyl amine species, dimethylamine (DMA), in cloud water over the northwest Atlantic. Data were gathered from the winter and summer 2020 deployments of the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) on board the HU 25 Falcon
    corecore